The governing equations of the flow of an oldroyd-B fluid are discretized using the finite element method. To overcome the convective nature of the momentum equation, the Galerkin/Least-Squares Finite Element Method (GLS/FEM) is used while the Discrete Elastic–Viscous Stress-Splitting (DEVSS) method is used to overcome the instability due to the absence of diffusion in the constitutive equations. The discretized equations are implemented on a hybrid system between the Graphics Processing Unit (GPU) architecture using Compute-Unified-Device-Architecture (CUDA) and a multi-core CPU. The
Due to the environmental concerns, much responsiveness has been paid to natural polymers and recycle wastes. Disposal of wastes like marine wastes and domestic wastes end up in landfills and open areas which cause environmental crisis. The development of biodegradable active packaging materials is one of the alternatives to reduce the using of synthetic petroleum-based plastics. Biodegradable films are made from biopolymers that were shown to have affinities in improving the shelf life of food product. © 2021 Nova Science Publishers, Inc.
A blend of poly 3-hexylthiophene (P3HT) and [6, 6]-phenyl-C61-butyric acid methyl ester (PCBM) is used as a photoactive layer for simulating a bulk heterojunction organic solar using general-purpose photovoltaic device model (GPVDM) software. The optical and electrical performance of the cell had been analyzed by changing the thickness of each layer and substrate material over a range of operating temperatures from -10 °C to - 40 °C. The flexible device exhibits higher PCE compared to a rigid device. The performance of the device was studied using transient simulation at different operating
High quality education should be the top priority for any nation seeking prosperity. This paper aims to present a conceptual model for e-learning system for developing countries. This is achieved adopting an object-oriented approach and Unified Modeling Language (UML). The functional and dynamic views of the system are presented and explained within this framework. The functional system includes Use Case diagrams and activity diagrams which are developed based on predefined functional requirements of the system. Furthermore, in the dynamic view of the system, interaction diagrams are developed
Hitec molten salt is a ternary eutectic mixture salt that is used as an energy storage medium in concentrated solar power plants to improve the system performance and reduce the operational cost. Thus, the heat transfer performance represented in Nusselt number has been investigated numerically under different inlet temperature and velocity conditions with constant uniform side heat flux. Also, friction factor and mass flow rate are studied numerically. CFD input/output data with 40 studied cases are used as a training dataset of a 2-layer Neural Network for thermo-hydro fields’ accelerated
Laminar unsteady incompressible flow past two-cylinders in tandem is investigated numerically. The vortex shedding over the cylinders' arrangement is studied at various Reynolds numbers and blockage ratios while changing the distance between the two cylinders. The output from the numerical simulations is used to feed different regression methodologies to find the optimal approach for the proposed system modeling and identification. Artificial Neural Network (ANN) using Levenberg-Marquardt Algorithm (LM) training algorithm is used, as well as Takagi-Sugeno (T-S) fuzzy model are used and
Designing a proper public transportation system is a main concern for many countries with large population size like Egypt. Therefore, the online based transportation business for individuals is highly growing in Egypt and the concept of online reservation in the transportation field has arisen. In this paper, a model in the analysis phase for an online public bus reservation system (OPBRS) is proposed. The system is large, complex and includes many interrelated functions. Therefore, the object-oriented modeling approach is chosen for developing the system by using the industry standard
The mechanical properties of bone tissues change significantly within the bone body, since it is considered as a heterogeneous material. The characterization of bone mechanical properties is necessary for many studies, such as in prosthesis design. An experimental uniaxial compression study is carried out in this work on bovine cortical bone tissue in long bones (femur and tibia) at several speeds to characterize its anisotropic behavior. Several samples from different regions are taken, and the result selection is carried out considering the worst situations and failure modes. When
Human's health information is considered momentous information, which is represented in medical systems. The amount of medical image information available for analysis is increasing with the modern medical image devices and biomedical image processing techniques. To prevent data modification from unauthorized persons from an insecure network, medical images should be encrypted efficiently. In this paper, a novel chaotic-based medical image encryption technique is proposed. This technique uses first a Butterworth High Pass Filter (BHPF) to enhance the medical image's details to avoid any
Technological revolution has reached all life activities starting from day planning reaching communication, entertainment, industry, and transportation. Each of previously mentioned categories get improved in a way making human life easier and safer. In the use of automatic control, several researches focused on automating vehicles’ systems to make driving easier and safer. The availability of autonomous vehicles will avoid accidents caused by taking a late decision or lack of driving experience in such situation. Approaching autonomous driving, an autonomous vehicle must be able to respond to