radwan.png

Prof. Ahmed Radwan

Vice President for Research

Faculty Office Ext.

1758

Faculty Building

UB2

Office Number

S21

Biography

Prof. Ahmed G. Radwan (SMIEEE, Fellow-AAS) is the Vice-President for Research, and Dean of Graduate Studies at Nile University, Egypt. He is the Founder and general co-Chair of NILES International Conference, and also the Founder and Chair of the Undergraduate Research Forum (UGRF) at Nile University. He has a total number of indexed publications of 475+, more than 11,000 citations and h-index: 55 according to Scopus.

He is a Co-inventor of 6 US patents, author/co-author of 12 international books as well as 18 book chapters in the highly ranked publishers. Prof. Radwan is leading the fractional-order circuits track worldwide. He is an associate editor in 4 prestigious Scopus-indexed journals and TC member in IEEE CASS. Some of his prestigious Awards: The State Encouragement Award, The State Excellence Award, Abdul Hameed Shoman Award, Scopus Award in Engineering and Technology, Prof. Tarek Khalil Award 2022 for Distinguished Leadership from Nile university and many more. He managed funded projects with budgets over 10M EGP and supervised more than 50 (Master's & Ph.Ds.).

Recent Publications

Comparative study of fractional filters for Alzheimer disease detection on MRI images

This paper presents a comparative study of four fractional order filters used for edge detection. The noise performance of these filters is analyzed upon the addition of random Gaussian noise, as well as the addition of salt and pepper noise. The peak signal to noise ratio (PSNR) of the detected images is numerically compared. The mean square error (MSE) of the detected images as well as the

Healthcare
Circuit Theory and Applications
Software and Communications

Design of a generalized bidirectional tent map suitable for encryption applications

The discrete tent map is one of the most famous discrete chaotic maps that has widely-spread applications. This paper investigates a set of four generalized tent maps where the conventional map is a special case. The proposed maps have extra degrees of freedom which provide different chaotic characteristics and increase the design flexibility required for many applications. Mathematical analyses

Circuit Theory and Applications
Software and Communications

Novel permutation measures for image encryption algorithms

This paper proposes two measures for the evaluation of permutation techniques used in image encryption. First, a general mathematical framework for describing the permutation phase used in image encryption is presented. Using this framework, six different permutation techniques, based on chaotic and non-chaotic generators, are described. The two new measures are, then, introduced to evaluate the

Circuit Theory and Applications
Software and Communications

Reactance-less RM relaxation oscillator using exponential memristor model

Recently, the memristor based relaxation oscillators become an important topic in circuit theory where the reactive elements are replaced by memristor which occupies a very small area. In this paper, a design of memristor-based relaxation oscillator is introduced based on exponential memristor model. Unlike previously published oscillators which were built based on a simple memristor model, the

Circuit Theory and Applications

On The Optimization of Fractional Order Low-Pass Filters

This paper presents three different optimization cases for normalized fractional order low-pass filters (LPFs) with numerical, circuit and experimental results. A multi-objective optimization technique is used for controlling some filter specifications, which are the transition bandwidth, the stop band frequency gain and the maximum allowable peak in the filter pass band. The extra degree of

Circuit Theory and Applications

Aging effect on apples bio-impedance using AD5933

In this paper, the effect of the fruits aging on bio-impedance is experimentally studied. Bio-impedance analysis, as accurate and fast method is used to investigate and monitor group of apples properties during aging. This method provides an alternative method for investigating apples physical properties that are highly related to chemical properties. AD5933 impedance analyzer chip within the

Circuit Theory and Applications
Software and Communications

Fundamentals of fractional-order LTI circuits and systems: number of poles, stability, time and frequency responses

This paper investigates some basic concepts of fractional-order linear time invariant systems related to their physical and non-physical transfer functions, poles, stability, time domain, frequency domain, and their relationships for different fractional-order differential equations. The analytical formula that calculates the number of poles in physical and non-physical s-plane for different

Circuit Theory and Applications

Image encryption algorithms using non-chaotic substitutions and permutations

This paper presents substitution and/or permutation symmetric-key encryption algorithms based on non-chaotic generators. While the substitution algorithm is based on fractals with delay and multiplexer elements, permutations are achieved via a chess-based algorithm. A comparison of four different cases; substitution-only, permutation-only, substitution-permutation and permutation-substitution; is

Circuit Theory and Applications

Generalized synchronization involving a linear combination of fractional-order chaotic systems

In this paper, a generalized scheme for synchronizing a fractional order chaotic system with another one or with a linear combination of two other fractional order chaotic systems is presented. Static (time-independent) or dynamic (time-dependent) synchronization that could generate multiple scaled versions of the response is discussed for some fractional order continuous chaotic systems based on

Circuit Theory and Applications
Research Tracks

1) Fractional-Order Systems

2) Memristor

3) Bifurcation

4) Encryption

5) Chaos

Projects
3
Research Project

Wireless Monitoring of Fruit Growth Using an Electrical BioImpedance Sensor Device

The idea of this project is to graph the quality of fruits and vegetables similar to ECG in humans. The purpose of this project is to build a prototype for a portable wireless electronic device capable of measuring live tissue with fruits or vegetables using bioimpedance and some mathematical & electrical models then transmitting data to the base station. This project will add scientific and
Chaotic
Research Project

Software Algorithm and Hardware Implementations of Information Security Using Number Theory and Chaotic Systems

The project aims at proposing novel software algorithms for information security and their hardware implementations. The algorithms will utilize different methods based on number theory and chaos theory. Cryptography and information hiding systems will be developed for different media data types such as text, image, audio and video. The project will investigate different classes of symmetric
3
Research Project

FPGA/FPAA Implementation of Fractional-order Systems

Fractional Calculus (FC) has been proved through numerous research examples to be a superior tool for system description to the narrow integer order domain. This is achieved through the extra parameters introduced by allowing the differential or integral orders to take non-integer values. The promising capabilities of fractional-order devices challenge the research to find a way to simulate its
5
Research Project

Ternary Logic Gates Design

Nowadays, the demand for building CNTFET-based ternary systems has been increasing. The current two-level binary logic and MOSFET technology have been facing limitations in chip size, design complexity, and power consumption. In this proposal, the method to design Ternary logic gates based on CNTFET and Memristor is proposed. Implementing Ternary Full-Adders and Multipliers is also discussed in
3
Research Project

Two Port Fractional-order Oscillators and Filters Suitable for Tissue Modeling

Objective: This project aims to study the relation between the mathematical fundamentals of fractional calculus and the concept of two-port circuit networks in the design of oscillators and filters with their analyses. These concepts will be applied to the Cole-Cole model, suitable for agriculture and biomedical applications tissue modelling. Outcomes: Literature Surveys (2 Journals + 2 Chapters)
1
Research Project

Development and Manufacturing of Soft Actuated Under Water Robotics

Objective/Contributions: Surveying research papers about transferring hard robot characteristics to soft one. Use additive manufacturing techniques to minimize the assembly process of the ROV actuator. Work on soft control and soft sensing system and study its ability to be used in soft robotics. Discuss biomimicking ROV. Create a hub for soft robotics at Nile University for participating in Egypt
00
Research Project

Fractional order Image Processing Platform for Retinal Pigmontosa Patients

Objective/Contributions: Investigation and categorization of the different methodologies in fractional operator discretization. Investigate the effect of the number of memory samples on the performance of different discretization schemes and recommend the scheme which gives the best performance for the least number of memory samples. Discuss the stability analysis of the discretized operators and
img
Research Project

An Underwater AR based System for Marine Life Detection and Classification for Divers and Tourists

Objective/Contributions: Collecting and annotating an extensive dataset of fish images representing the fish species in the red sea. Building a machine learning model capable of detecting and classifying fish species from a real-time video. Building a proof-of-concept prototype for the AR hardware that is capable of capturing the live video of marine life, running the classification model, and
Research Project

Multi-stage Low-cost Treatment of Dyes and Paints Wastewater by Coagulation, Adsorption, and Filtration for Reuse in Several Application

Objective/Contributions: Designing and constructing a low-cost, efficient, rapid environmentally friendly treatment system for textile and paint industries' recycling and treatment. Conducting a comprehensive literature database of all the reuse and treatment methods, in paints wastewater treatment and all the pilot plants, and treatment plants used success stories that successfully reduce the
77
Research Project

Bio-Mimetic Locomotion of Soft Turtle Robot

Abstract Amphibious robots have great potential for a variety of applications, but their design can be complex and expensive. Bio-inspired soft robotics offers a promising solution, as their actuators can perform evenly on land and underwater. Our robot takes inspiration from turtle locomotion as it bridges the gap between traditional four-legged robots and swimming robots. The robot can be
77
Research Project

Bio-inspired Soft Robot for Monitoring Coral Reefs

Abstract Coral reefs play a crucial role in supporting a quarter of all aquatic life, but their existence is now threatened by ongoing climate changes. Our project aims to develop an underwater soft robot that can mimic the morphology and shape of actual marine creatures and to imitate their swimming motion. This robot can play a critical role as monitoring platform to understand the reefs