about.jpg

Filter by

Facility layout and supply chain management of food service industries: A case study

Although there is a massive number of food tech enabled startups all over the world only few of them can succeed globally, determining the main factors which affect success or failure are still a challenge. In this paper, industrial engineering fundamentals are used to develop the startup structure and workplace design in two main areas; layout design to improve the work environment as well as

Innovation, Entrepreneurship and Competitiveness

An efficient optimization algorithm for modular product design

Modularity concepts play an important role in the process of developing new complex products. Modularization involves dividing a product into a set of modules - each of which consisting of a set of components - that are interdependent in the same cluster and independent between clusters. During this process, a product can be represented using a Design Structure Matrix (DSM). A DSM acts as a tool

Mechanical Design

Corneal Biomechanics Assessment Using High Frequency Ultrasound B-Mode Imaging

Assessment of corneal biomechanics for pre- and post-refractive surgery is of great clinical importance. Corneal biomechanics affect vision quality of human eye. Many factors affect corneal biomechanics such as, age, corneal diseases and corneal refractive surgery. There is a need for non-invasive in-vivo measurement of corneal biomechanics due to corneal shape preserving as opposed to ex-vivo

Artificial Intelligence

A Hybrid Feature Selection Optimization Model for High Dimension Data Classification

Feature selection is an NP-hard combinatorial problem, in which the number of possible feature subsets increases exponentially with the number of features. In the case of large dimensionality, the goal of feature selection is to determine the smallest possible features considering the most informative subset. In this paper, we proposed a hybrid feature selection optimization model for Cancer

Artificial Intelligence

An improved generic Johnson-Cook model for the flow prediction of different categories of alloys at elevated temperatures and dynamic loading conditions

This paper presents a generic model for material flow prediction based on the well-known Johnson-Cook model. The model is developed to precisely predict the flow behavior of various categories of alloys. The coupled effects between strain, strain rate, and temperature were taken into consideration. The proposed model is developed and assessed using the hot deformation data of four different

Mechanical Design

Comparative Study for Different URANS Models for Capturing Flow Separation Inside a Plane Diffuser

A comparative numerical study is performed among different URANS turbulence models investigating the ability of the models to capture the deformation of the boundary layer near the separation zone. The results are validated against previously published numerical works (URANS, LES, DNS) and experimental works. The comparison included grid resolution, the pressure distribution, and the velocity

Mechanical Design

An energy-utilization metric for heat transfer devices

A new metric for measuring the performance of heat transfer devices, which require the consumption of mechanical power to function, is proposed. The proposed Energy-Utilization Metric, EUM, is derived to quantify the achieved heat transfer rate per unit consumed mechanical power. By virtue of its definition, using the EUM as a preference metric between different heat transfer devices guarantees

Mechanical Design

A 3D-convolutional neural network framework with ensemble learning techniques for multi-modal emotion recognition

Nowadays, human emotion recognition is a mandatory task for many human machine interaction fields. This paper proposes a novel multi-modal human emotion recognition framework. The proposed scheme utilizes first the 3D-Convolutional Neural Network (3D-CNN) deep learning architecture for extracting the spatio-temporal features from the electroencephalogram (EEG) signals, and the video data of human

Mechanical Design

Multimodal Video Sentiment Analysis Using Deep Learning Approaches, a Survey

Deep learning has emerged as a powerful machine learning technique to employ in multimodal sentiment analysis tasks. In the recent years, many deep learning models and various algorithms have been proposed in the field of multimodal sentiment analysis which urges the need to have survey papers that summarize the recent research trends and directions. This survey paper tackles a comprehensive

Artificial Intelligence
Software and Communications

An Analytical Computational Algorithm for Solving a System of Multipantograph DDEs Using Laplace Variational Iteration Algorithm

In this research, an approximation symbolic algorithm is suggested to obtain an approximate solution of multipantograph system of type delay differential equations (DDEs) using a combination of Laplace transform and variational iteration algorithm (VIA). The corresponding convergence results are acquired, and an efficient algorithm for choosing a feasible Lagrange multiplier is designed in the

Artificial Intelligence
Software and Communications