about.jpg

Filter by

On power control and frequency reuse in the two user cognitive channel

This paper considers the generalized cognitive radio channel where the secondary user is allowed to reuse the frequency during both the idle and active periods of the primary user, as long as the primary rate remains the same. In this setting, the optimal power allocation policy with single-input singleoutput (SISO) primary and secondary channels is explored. Interestingly, the offered gain

Software and Communications

ARQ-based secret key sharing

This paper develops a novel framework for sharing secret keys using existing Automatic Repeat reQuest (ARQ) protocols. Our approach exploits the multi-path nature of the wireless environment to hide the key from passive eavesdroppers. The proposed framework does not assume the availability of any prior channel state information (CSI) and exploits only the one bit ACK/NACK feedback from the

Software and Communications

Blind cognitive MAC protocols

We consider the design of cognitive Medium Access Control (MAC) protocols enabling an unlicensed (secondary) transmitter-receiver pair to communicate over the idle periods of a set of licensed channels, i.e., the primary network. The objective is to maximize data throughput while maintaining the synchronization between secondary users and avoiding interference with licensed (primary) users. No

Software and Communications

Fingerprinting with minimum distance decoding

This paper adopts an information-theoretic framework for the design of collusion-resistant coding/decoding schemes for digital fingerprinting. More specifically, the minimum distance decision rule is used to identify 1 out of $t$ pirates. Achievable rates, under this detection rule, are characterized in two scenarios. First, we consider the averaging attack where a random coding argument is used

Software and Communications

CellNet:A bottom-up approach to network design

The ever-increasing dependence on the Internet is challenged by several factors impeding the smooth transition to the nomadic and ubiquitous future communications. These hindering factors are primarily attributed to the top-down approach in designing computer networks that resulted in adopting a layered architecture for abstracting network functionalities as well as for engineering protocols; a

Software and Communications

Randomization for security in half-duplex two-way Gaussian channels

This paper develops a new physical layer framework for secure two-way wireless communication in the presence of a passive eavesdropper, i.e., Eve. Our approach achieves perfect information theoretic secrecy via a novel randomized scheduling and power allocation scheme. The key idea is to allow Alice and. Bob to send symbols at random time instants. While Alice will be able to determine the symbols

Software and Communications

The MIMO wireless switch: Relaying can increase the multiplexing gain

This paper considers an interference network composed of K half-duplex single-antenna pairs of users who wish to establish bi-directional communication with the aid of a multiinput-multi-output (MIMO) half-duplex relay node. This channel is referred to as the "MIMO Wireless Switch" since, for the sake of simplicity, our model assumes no direct link between the two end nodes of each pair implying

Software and Communications

Smart devices for smart environments: Device-free passive detection in real environments

Device-free Passive (DfP) localization is a system envisioned to detect, track, and identify entities that do not carry any device, nor participate actively in the localization process. A DfP system allows using nominal WiFi equipment for intrusion detection, without using any extra hardware, adding smartness to any WiFi-enabled device. In this paper, we focus on the detection function of the DfP

Software and Communications

Alignment of minisatellite maps based on run-length encoding scheme

Subsequent duplication events are responsible for the evolution of the minisatellite maps. Alignment of two minisatellite maps should therefore take these duplication events into account, in addition to the well-known edit operations. All algorithms for computing an optimal alignment of two maps, including the one presented here, first deduce the costs of optimal duplication scenarios for all

Circuit Theory and Applications
Software and Communications

Distributed admission and power control for cognitive radios in spectrum underlay networks

In this paper we investigate admission control and power allocation for cognitive radios in an underlay network. We consider the problem of maximizing the number of supported secondary links under their minimum QoS requirements without violating the maximum tolerable interference on primary receivers in a cellular network. An optimal solution to our problem is shown in previous works to be NP-hard

Circuit Theory and Applications
Software and Communications