about.jpg

Filter by

A multiple performance analysis of market-capacity integration policies

A model that uses simulation augmented with Design of Experiments (DOE) is presented to analyse the performance of a Make-to-Order (MTO) reconfigurable manufacturing system with scalable capacity. Unlike the classical capacity scaling policies, the proposed hybrid capacity scaling policy is determined using multiple performance measures that reflect cost, internal stability and responsiveness. The

Polarization in bistatic radar probing of planetary surfaces: Application to mars express data

Spacecraft-to-ground bistatic radar provides a straightforward method for surveying planetary surfaces on scales of importance to landers and rovers. Centimeter wavelengths, currently in use for deep-space telecommunications, interact with surface structure of similar to somewhat larger scales. For the quasi-specular component of scattering and for surfaces uniformly illuminated by monochromatic

Improved strain measuring using fast strain-encoded cardiac MR

The strain encoding (SENC) technique encodes regional strain of the heart into the acquired MR images and produces two images with two different tunings so that longitudinal strain, on the short-axis view, or circumferential strain on the long-axis view, are measured. Interleaving acquisition is used to shorten the acquisition time of the two tuned images by 50%, but it suffers from errors in the

Healthcare
Circuit Theory and Applications
Innovation, Entrepreneurship and Competitiveness

Segmentation of Choroidal Neovascularization lesions in fluorescein angiograms using parametric modeling of the intensity variation

Choroidal Neovascularization (CNV) is a severe retinal disease characterized by abnormal growth of blood vessels in the choroidal layer. Current diagnosis of CNV depends mainly on qualitative assessment of a temporal sequence of fundus fluorescein angiography images. Automated segmentation and identification of the CNV lesion types (either occult or classic) is required to reduce the inter-and

Artificial Intelligence
Healthcare

Segmentation of Diabetic Macular Edema in fluorescein angiograms

Fundus Fluorescein Angiography (FA) is a powerful tool for imaging and evaluating Diabetic Macular Edema (DME), where the fluorescein dye leaks and accumulates in the diseased areas. Currently, the assessment of FA images is qualitative and suffers from large inter-observer variability. A necessary step towards quantitative assessment of DME is automatic segmentation of fluorescein leakage. In

Artificial Intelligence
Healthcare

Segmentation of strain-encoded magnetic resonance images using graph-cuts

Imaging of the heart anatomy and function using Strain Encoded (SENC) magnetic resonance imaging (MRI) is a powerful tool for diagnosing a number of heart diseases. Despite excellent sensitivity to tissue deformation, the technique inherently suffers from elevated noise level which hinders proper automatic segmentation using conventional techniques. In this work, we propose a method to accurately

Artificial Intelligence
Healthcare

A distributed data collection algorithm for wireless sensor networks with persistent storage nodes

A distributed data collection algorithm to accurately store and forward information obtained by wireless sensor networks is proposed. The proposed algorithm does not depend on the sensor network topology, routing tables, or geographic locations of sensor nodes, but rather makes use of uniformly distributed storage nodes. Analytical and simulation results for this algorithm show that, with high

Artificial Intelligence
Software and Communications

Combating sybil attacks in vehicular ad hoc networks

Vehicular Ad Hoc Networks (VANETs) are considered as a promising approach for facilitating road safety, traffic management, and infotainment dissemination for drivers and passengers. However, they are subject to an attack that has a severe impact on their security. This attack is called the Sybil attack, and it is considered as one of the most serious attacks to VANETs, and a threat to lives of

Artificial Intelligence
Software and Communications

A semi supervised learning-based method for adaptive shadow detection

In vision-based systems, cast shadow detection is one of the key problems that must be alleviated in order to achieve robust segmentation of moving objects. Most methods for shadow detection require significant human input and they work in static settings. This paper proposes a novel approach for adaptive shadow detection by using semi-supervised learning which is a technique that has been widely

Artificial Intelligence
Software and Communications

A novel segmentation method to identify left ventricular infarction in short-axis composite strain-encoded magnetic resonance images

Composite Strain Encoding (CSENC) is a new Magnetic Resonance Imaging (MRI) technique for simultaneously acquiring cardiac functional and viability images. It combines the use of Delayed Enhancement (DE) and the Strain Encoding (SENC) imaging techniques to identify the infracted (dead) tissue and to image the myocardial deformation inside the heart muscle. In this work, a new unsupervised

Artificial Intelligence