

3D Modeling of Folded Footings with Ring Beam on Sand Using Various Folding Angles
Folded isolated footings represent an alternative to traditional isolated footings to support structures on weak soils. The reinforced concrete used in folded footings can be optimized by minimizing the tensile stresses developing in the concrete section, reducing the resulting settlement and the redistribution of stresses on the supporting soil. This study presents a comprehensive numerical investigation of the performance of folded footings placed on cohesion-less soil. Six quarter-scaled footings supported on medium dense sand were modeled using finite element tools to analyze stress changes induced in concrete and soil. One flat footing was used as a control model and five folded footings with folding angles of 15°, 30°, 45°, 51.5°, and 60° with the horizontal were investigated. Results showed that the use of folded footings decreased the internal stresses by up to about 90%. In addition to increasing the depth of stress influence in the soil and enhancing the bearing capacity. Moreover, the total settlement occurring in the supporting soil decreased by about 25%. Finally, design charts were provided to enhance the structural and geotechnical performance of folded footings. © 2024, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.