radwan.png

Prof. Ahmed Radwan

Vice President for Research

Faculty Office Ext.

1758

Faculty Building

UB2

Office Number

S21

Biography

Ahmed G. Radwan is the vice president for research at Nile University, Egypt and a professor in Mathematics and Physics department in Cairo University, Egypt. Also, he is an IEEE senior member and a member of the Applied Science Research Council, Specialized Scientific Councils (SSC), ASRT, Egypt. R Radwan was the former director of Nanoelectronics Integrated Systems Center (NISC) in Nile University, Egypt and Technical Center for Career Development (TCCD) in Cairo University, Egypt. During 2008 and 2009, He was a visiting Professor in Computational Electromagnetic Lab (CEL), in the Electrical and Computer Engineering Department (ECE) in McMaster University, Canada. Then in 2009, he was selected to take part in the first foundation research teams to join King Abdullah University of Science and Technology (KAUST).

Dr. Radwan has 230+ papers, h-index 32, and more than 3000 citations based on the Scopus database. He is the Co-inventor of Six US patents, author/Co-author of Seven international books as well as 15-chapter books in the highly ranked publishers such as Elsevier and Springer. He received many research grants as Principle Investigator (PI), CO-PI, or Consultant from different national/international organizations. He was Invited to be Lead/Guest Editors in Journal of Circuits, Systems and Signal Processing, and Journal of Mathematical Problems in Engineering, and Complexity. He organized many special sessions, and participated as Technical Program Committee (TPC) in various international conferences. He was selected as a member of the first scientific council of Egyptian Young Academy of Sciences (EYAS) as well as in the first scientific council of the Egyptian Center for the Advancement of Science, Technology, and Innovation (ECASTI) to empower and encourage Egyptian young scientists in science and technology and build knowledge-based societies.

His research interests include interdisciplinary concepts between mathematics and engineering applications such as fractional-order systems, bifurcation, chaos, memristor, and encryption. Dr. Radwan was awarded various awards as follows: The Cairo University excellence award for research in the engineering sciences in 2016. The best researcher awards Nile University 2015 and 2016. The Abdul Hameed Shoman Award for Arab Researchers in basic sciences in 2015. The state achievements award for research in mathematical sciences in 2012. The Cairo University achievements award for research in the engineering sciences in 2013.

Recent Publications

Arithmetic optimization approach for parameters identification of different PV diode models with FOPI-MPPT

The Maximum Power Point Tracker (MPPT) provides the most efficient use of a Photo-voltaic system independent of irradiance or temperature fluctuations. This paper introduces the modeling and control of a photo-voltaic system operating at MPPT using the arithmetic optimization algorithm (AOA). The single and double Photo-voltaic models are investigated. Their optimal unknown parameters are

Circuit Theory and Applications
Software and Communications

Underwater Soft Robotics: A Review of Bioinspiration in Design, Actuation, Modeling, and Control

Nature and biological creatures are some of the main sources of inspiration for humans. Engineers have aspired to emulate these natural systems. As rigid systems become increasingly limited in their capabilities to perform complex tasks and adapt to their environment like living creatures, the need for soft systems has become more prominent due to the similar complex, compliant, and flexible

Mechanical Design

Plant stem tissue modeling and parameter identification using metaheuristic optimization algorithms

Bio-impedance non-invasive measurement techniques usage is rapidly increasing in the agriculture industry. These measured impedance variations reflect tacit biochemical and biophysical changes of living and non-living tissues. Bio-impedance circuit modeling is an effective solution used in biology and medicine to fit the measured impedance. This paper proposes two new fractional-order bio
Circuit Theory and Applications

Modeling of Soft Pneumatic Actuators with Different Orientation Angles Using Echo State Networks for Irregular Time Series Data

Modeling of soft robotics systems proves to be an extremely difficult task, due to the large deformation of the soft materials used to make such robots. Reliable and accurate models are necessary for the control task of these soft robots. In this paper, a data-driven approach using machine learning is presented to model the kinematics of Soft Pneumatic Actuators (SPAs). An Echo State Network (ESN)

Circuit Theory and Applications

Discrete fractional-order Caputo method to overcome trapping in local optima: Manta Ray Foraging Optimizer as a case study

Enhancing the exploration and exploitation phases of the metaheuristic (MH) optimization algorithms is the key to avoiding local optima. The Manta ray foraging optimizer is a recently proposed MH optimizer. The MRFO showed a good performance in the simple optimization problems. However, it is trapped into the local optimum in the more elaborated ones due to the original algorithm's low capability

Circuit Theory and Applications

Modified fractional-order model for biomass degradation in an up-flow anaerobic sludge blanket reactor at Zenein Wastewater Treatment Plant

This paper presents a modified fractional-order model (FOM) for microorganism stimulation in an up-flow anaerobic sludge blanket (UASB) reactor treating low-strength wastewater. This study aimed to examine the famine period of methanogens due to biomass accumulation in the UASB reactor over long time periods at a constant organic loading rate (OLR). This modified model can investigate the

Energy and Water
Circuit Theory and Applications

On-the-Fly Parallel Processing IP-Core for Image Blur Detection, Compression, and Chaotic Encryption Based on FPGA

This paper presents a 3 in 1 standalone FPGA system which can perform color image blur detection in parallel with compression and encryption. Both blur detection and compression are based on the 3-level Haar wavelet transform, which is used as a common building block to save the resources. The compression is based on performing the hard thresholding scheme followed by the Run Length Encoding (RLE)

Circuit Theory and Applications

Two implementations of fractional-order relaxation oscillators

This work proposes general formulas for designing two different topologies of fractional-order relaxation oscillators. One topology contains an Operational Amplifier and the other one relies on an Operational Trans-Resistance Amplifier. The design procedure hinges on the general fractional-order natural and step responses of RC, which is proved in this work depending on Mittag Leffler function

Circuit Theory and Applications
Software and Communications

A Grunwald–Letnikov based Manta ray foraging optimizer for global optimization and image segmentation

This paper presents a modified version of Manta ray foraging optimizer (MRFO) algorithm to deal with global optimization and multilevel image segmentation problems. MRFO is a meta-heuristic technique that simulates the behaviors of manta rays to find the food. MRFO established its ability to find a suitable solution for a variant of optimization problems. However, by analyzing its behaviors during

Artificial Intelligence
Circuit Theory and Applications
Software and Communications
Research Tracks

1) Fractional-Order Systems

2) Memristor

3) Bifurcation

4) Encryption

5) Chaos

Projects
3
Research Project

Wireless Monitoring of Fruit Growth Using an Electrical BioImpedance Sensor Device

The idea of this project is to graph the quality of fruits and vegetables similar to ECG in humans. The purpose of this project is to build a prototype for a portable wireless electronic device capable of measuring live tissue with fruits or vegetables using bioimpedance and some mathematical & electrical models then transmitting data to the base station. This project will add scientific and
Chaotic
Research Project

Software Algorithm and Hardware Implementations of Information Security Using Number Theory and Chaotic Systems

The project aims at proposing novel software algorithms for information security and their hardware implementations. The algorithms will utilize different methods based on number theory and chaos theory. Cryptography and information hiding systems will be developed for different media data types such as text, image, audio and video. The project will investigate different classes of symmetric
5
Research Project

Ternary Logic Gates Design

Nowadays, the demand for building CNTFET-based ternary systems has been increasing. The current two-level binary logic and MOSFET technology have been facing limitations in chip size, design complexity, and power consumption. In this proposal, the method to design Ternary logic gates based on CNTFET and Memristor is proposed. Implementing Ternary Full-Adders and Multipliers is also discussed in
3
Research Project

Two Port Fractional-order Oscillators and Filters Suitable for Tissue Modeling

Objective: This project aims to study the relation between the mathematical fundamentals of fractional calculus and the concept of two-port circuit networks in the design of oscillators and filters with their analyses. These concepts will be applied to the Cole-Cole model, suitable for agriculture and biomedical applications tissue modelling. Outcomes: Literature Surveys (2 Journals + 2 Chapters)
00
Research Project

Fractional order Image Processing Platform for Retinal Pigmontosa Patients

Objective/Contributions: Investigation and categorization of the different methodologies in fractional operator discretization. Investigate the effect of the number of memory samples on the performance of different discretization schemes and recommend the scheme which gives the best performance for the least number of memory samples. Discuss the stability analysis of the discretized operators and
Research Project

Multi-stage Low-cost Treatment of Dyes and Paints Wastewater by Coagulation, Adsorption, and Filtration for Reuse in Several Application

Objective/Contributions: Designing and constructing a low-cost, efficient, rapid environmentally friendly treatment system for textile and paint industries' recycling and treatment. Conducting a comprehensive literature database of all the reuse and treatment methods, in paints wastewater treatment and all the pilot plants, and treatment plants used success stories that successfully reduce the